Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.753
1.
J Clin Invest ; 134(10)2024 May 15.
Article En | MEDLINE | ID: mdl-38747291

Idiopathic systemic capillary leak syndrome (ISCLS) is a rare, recurrent condition with dramatically increased blood vessel permeability and, therefore, induction of systemic edema, which may lead to organ damage and death. In this issue of the JCI, Ablooglu et al. showed that ISCLS vessels were hypersensitive to agents known to increase vascular permeability, using human biopsies, cell culture, and mouse models. Several endothelium-specific proteins that regulate endothelial junctions were dysregulated and thereby compromised the vascular barrier. These findings suggest that endothelium-intrinsic dysregulation underlies hyperpermeability and implicate the cytoplasmic serine/threonine protein phosphatase 2A (PP2A) as a potential drug target for the treatment of ISCLS.


Capillary Leak Syndrome , Capillary Permeability , Protein Phosphatase 2 , Humans , Animals , Mice , Capillary Leak Syndrome/pathology , Capillary Leak Syndrome/metabolism , Protein Phosphatase 2/metabolism , Protein Phosphatase 2/genetics , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology
2.
Cells ; 13(8)2024 Apr 09.
Article En | MEDLINE | ID: mdl-38667270

The Sit4 protein phosphatase plays a key role in orchestrating various cellular processes essential for maintaining cell viability during aging. We have previously shown that SIT4 deletion promotes vacuolar acidification, mitochondrial derepression, and oxidative stress resistance, increasing yeast chronological lifespan. In this study, we performed a proteomic analysis of isolated vacuoles and yeast genetic interaction analysis to unravel how Sit4 influences vacuolar and mitochondrial function. By employing high-resolution mass spectrometry, we show that sit4Δ vacuolar membranes were enriched in Vps27 and Hse1, two proteins that are part of the endosomal sorting complex required for transport-0. In addition, SIT4 exhibited a negative genetic interaction with VPS27, as sit4∆vps27∆ double mutants had a shortened lifespan compared to sit4∆ and vps27∆ single mutants. Our results also show that Vps27 did not increase sit4∆ lifespan by improving protein trafficking or vacuolar sorting pathways. However, Vps27 was critical for iron homeostasis and mitochondrial function in sit4∆ cells, as sit4∆vps27∆ double mutants exhibited high iron levels and impaired mitochondrial respiration. These findings show, for the first time, cross-talk between Sit4 and Vps27, providing new insights into the mechanisms governing chronological lifespan.


Mitochondria , Protein Phosphatase 2 , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Vacuoles , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Mitochondria/metabolism , Vacuoles/metabolism , Iron/metabolism , Protein Transport , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Mutation/genetics
3.
Clin Cancer Res ; 30(10): 2193-2205, 2024 May 15.
Article En | MEDLINE | ID: mdl-38592373

PURPOSE: TGFß signaling is implicated in the progression of most cancers, including esophageal adenocarcinoma (EAC). Emerging evidence indicates that TGFß signaling is a key factor in the development of resistance toward cancer therapy. EXPERIMENTAL DESIGN: In this study, we developed patient-derived organoids and patient-derived xenograft models of EAC and performed bioinformatics analysis combined with functional genetics to investigate the role of SMAD family member 3 (SMAD3) in EAC resistance to oxaliplatin. RESULTS: Chemotherapy nonresponding patients showed enrichment of SMAD3 gene expression when compared with responders. In a randomized patient-derived xenograft experiment, SMAD3 inhibition in combination with oxaliplatin effectively diminished tumor burden by impeding DNA repair. SMAD3 interacted directly with protein phosphatase 2A (PP2A), a key regulator of the DNA damage repair protein ataxia telangiectasia mutated (ATM). SMAD3 inhibition diminished ATM phosphorylation by enhancing the binding of PP2A to ATM, causing excessive levels of DNA damage. CONCLUSIONS: Our results identify SMAD3 as a promising therapeutic target for future combination strategies for the treatment of patients with EAC.


Adenocarcinoma , Ataxia Telangiectasia Mutated Proteins , DNA Repair , Esophageal Neoplasms , Oxaliplatin , Smad3 Protein , Xenograft Model Antitumor Assays , Humans , Smad3 Protein/metabolism , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Neoplasms/metabolism , DNA Repair/drug effects , Adenocarcinoma/drug therapy , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Animals , Mice , Oxaliplatin/pharmacology , Oxaliplatin/therapeutic use , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , DNA Damage/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Protein Phosphatase 2/metabolism , Protein Phosphatase 2/genetics , Signal Transduction/drug effects , Phosphorylation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Organoids/drug effects
4.
EMBO Rep ; 25(5): 2220-2238, 2024 May.
Article En | MEDLINE | ID: mdl-38600345

Perturbation of protein phosphorylation represents an attractive approach to cancer treatment. Besides kinase inhibitors, protein phosphatase inhibitors have been shown to have anti-cancer activity. A prime example is the small molecule LB-100, an inhibitor of protein phosphatases 2A/5 (PP2A/PP5), enzymes that affect cellular physiology. LB-100 has proven effective in pre-clinical models in combination with immunotherapy, but the molecular underpinnings of this synergy remain understood poorly. We report here a sensitivity of the mRNA splicing machinery to phosphorylation changes in response to LB-100 in colorectal adenocarcinoma. We observe enrichment for differentially phosphorylated sites within cancer-critical splicing nodes of U2 snRNP, SRSF and hnRNP proteins. Altered phosphorylation endows LB-100-treated colorectal adenocarcinoma cells with differential splicing patterns. In PP2A-inhibited cells, over 1000 events of exon skipping and intron retention affect regulators of genomic integrity. Finally, we show that LB-100-evoked alternative splicing leads to neoantigens that are presented by MHC class 1 at the cell surface. Our findings provide a potential explanation for the pre-clinical and clinical observations that LB-100 sensitizes cancer cells to immune checkpoint blockade.


Colonic Neoplasms , RNA Splicing , Humans , Colonic Neoplasms/genetics , Colonic Neoplasms/immunology , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , RNA Splicing/drug effects , Phosphorylation , Cell Line, Tumor , RNA, Messenger/genetics , RNA, Messenger/metabolism , Alternative Splicing , Antigens, Neoplasm/metabolism , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Serine-Arginine Splicing Factors/metabolism , Serine-Arginine Splicing Factors/genetics , Protein Phosphatase 2/metabolism , Enzyme Inhibitors/pharmacology
5.
Cell Commun Signal ; 22(1): 217, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38570831

As a major source of cellular serine and threonine phosphatase activity, protein phosphatase-2A (PP2A) modulates signaling pathways in health and disease. PP2A complexes consist of catalytic, scaffolding, and B-type subunits. Seventeen PP2A B-type subunits direct PP2A complexes to selected substrates. It is ill-defined how PP2A B-type subunits determine the growth and drug responsiveness of tumor cells. Pancreatic ductal adenocarcinoma (PDAC) is a disease with poor prognosis. We analyzed the responses of murine and human mesenchymal and epithelial PDAC cells to the specific PP2A inhibitor phendione. We assessed protein levels by immunoblot and proteomics and cell fate by flow cytometry, confocal microscopy, and genetic manipulation. We show that murine mesenchymal PDAC cells express significantly higher levels of the PP2A B-type subunit PR130 than epithelial PDAC cells. This overexpression of PR130 is associated with a dependency of such metastasis-prone cells on the catalytic activity of PP2A. Phendione induces apoptosis and an accumulation of cytotoxic protein aggregates in murine mesenchymal and human PDAC cells. These processes occur independently of the frequently mutated tumor suppressor p53. Proteomic analyses reveal that phendione upregulates the chaperone HSP70 in mesenchymal PDAC cells. Inhibition of HSP70 promotes phendione-induced apoptosis and phendione promotes a proteasomal degradation of PR130. Genetic elimination of PR130 sensitizes murine and human PDAC cells to phendione-induced apoptosis and protein aggregate formation. These data suggest that the PP2A-PR130 complex dephosphorylates and thereby prevents the aggregation of proteins in tumor cells.


Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Animals , Mice , Protein Phosphatase 2/genetics , Protein Aggregates , Proteomics , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/metabolism
6.
Ecotoxicol Environ Saf ; 277: 116365, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38657452

Microglia, the resident immune cells of the central nervous system (CNS), play a dual role in neurotoxicity by releasing the NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome and brain-derived neurotrophic factor (BDNF) in response to environmental stress. Suppression of BDNF is implicated in learning and memory impairment induced by exposure to manganese (Mn) or lead (Pb) individually. Methyl CpG Binding Protein 2 (MeCp2) and its phosphorylation status are related to BDNF suppression. Protein phosphatase2A (PP2A), a member of the serine/threonine phosphatases family, dephosphorylates substrates based on the methylation state of its catalytic C subunit (PP2Ac). However, the specific impairment patterns and molecular mechanisms resulting from co-exposure to Mn and Pb remain unclear. Therefore, the purpose of this study was to explore the effects of Mn and Pb exposure, alone and in combination, on inducing neurotoxicity in the hippocampus of mice and BV2 cells, and to determine whether simultaneous exposure to both metals exacerbate their toxicity. Our findings reveal that co-exposure to Mn and Pb leads to severe learning and memory impairment in mice, which correlates with the accumulation of metals in the hippocampus and synergistic suppression of BDNF. This suppression is accompanied by up-regulation of the epigenetic repressor MeCp2 and its phosphorylation status, as well as demethylation of PP2Ac. Furthermore, inhibition of PP2Ac demethylation using ABL127, an inhibitor for its protein phosphatase methylesterase1 (PME1), or knockdown of MeCp2 via siRNA transfection in vitro effectively increases BDNF expression and mitigates BV2 cell damage induced by Mn and Pb co-exposure. We also observe abnormal activation of microglia characterized by enhanced release of the NLRP3 inflammasome, Casepase-1 and pro-inflammatory cytokines IL-1ß, in the hippocampus of mice and BV2 cells. In summary, our experiments demonstrate that simultaneous exposure to Mn and Pb results in more severe hippocampus-dependent learning and memory impairment, which is attributed to epigenetic suppression of BDNF mediated by PP2A regulation.


Brain-Derived Neurotrophic Factor , Epigenesis, Genetic , Hippocampus , Lead , Manganese , Memory Disorders , Animals , Brain-Derived Neurotrophic Factor/metabolism , Mice , Epigenesis, Genetic/drug effects , Manganese/toxicity , Lead/toxicity , Hippocampus/drug effects , Hippocampus/metabolism , Memory Disorders/chemically induced , Male , Mice, Inbred C57BL , Microglia/drug effects , Methyl-CpG-Binding Protein 2/metabolism , Methyl-CpG-Binding Protein 2/genetics , Protein Phosphatase 2/metabolism , Learning/drug effects
7.
Nature ; 629(8010): 219-227, 2024 May.
Article En | MEDLINE | ID: mdl-38570683

The Integrator complex can terminate RNA polymerase II (Pol II) in the promoter-proximal region of genes. Previous work has shed light on how Integrator binds to the paused elongation complex consisting of Pol II, the DRB sensitivity-inducing factor (DSIF) and the negative elongation factor (NELF) and how it cleaves the nascent RNA transcript1, but has not explained how Integrator removes Pol II from the DNA template. Here we present three cryo-electron microscopy structures of the complete Integrator-PP2A complex in different functional states. The structure of the pre-termination complex reveals a previously unresolved, scorpion-tail-shaped INTS10-INTS13-INTS14-INTS15 module that may use its 'sting' to open the DSIF DNA clamp and facilitate termination. The structure of the post-termination complex shows that the previously unresolved subunit INTS3 and associated sensor of single-stranded DNA complex (SOSS) factors prevent Pol II rebinding to Integrator after termination. The structure of the free Integrator-PP2A complex in an inactive closed conformation2 reveals that INTS6 blocks the PP2A phosphatase active site. These results lead to a model for how Integrator terminates Pol II transcription in three steps that involve major rearrangements.


Cryoelectron Microscopy , Models, Molecular , Protein Phosphatase 2 , RNA Polymerase II , RNA Polymerase II/metabolism , RNA Polymerase II/chemistry , RNA Polymerase II/ultrastructure , Protein Phosphatase 2/metabolism , Protein Phosphatase 2/chemistry , Protein Phosphatase 2/ultrastructure , Transcription Termination, Genetic , Humans , Transcription Factors/metabolism , Transcription Factors/chemistry , Protein Binding , Transcriptional Elongation Factors/metabolism , Transcriptional Elongation Factors/chemistry , Nuclear Proteins/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/ultrastructure , Protein Subunits/metabolism , Protein Subunits/chemistry
8.
Environ Toxicol ; 39(6): 3612-3627, 2024 Jun.
Article En | MEDLINE | ID: mdl-38491812

Protein phosphatase 2A (PP2A), a heterotrimeric holoenzyme (scaffolding, catalytic, and regulatory subunits), regulates dephosphorylation for more than half of serine/threonine phosphosites and exhibits diverse cellular functions. Although several studies on natural products and miRNAs have emphasized their impacts on PP2A regulation, their connections lack systemic organization. Moreover, only part of the PP2A family has been investigated. This review focuses on the PP2A-modulating effects of natural products and miRNAs' interactions with potential PP2A targets in cancer and non-cancer cells. PP2A-modulating natural products and miRNAs were retrieved through a literature search. Utilizing the miRDB database, potential PP2A targets of these PP2A-modulating miRNAs for the whole set (17 members) of the PP2A family were retrieved. Finally, PP2A-modulating natural products and miRNAs were linked via a literature search. This review provides systemic directions for assessing natural products and miRNAs relating to the PP2A-modulating functions in cancer and disease treatments.


Biological Products , MicroRNAs , Neoplasms , Protein Phosphatase 2 , MicroRNAs/metabolism , MicroRNAs/genetics , Protein Phosphatase 2/metabolism , Biological Products/pharmacology , Humans , Neoplasms/genetics , Neoplasms/drug therapy , Animals
9.
J Clin Invest ; 134(10)2024 Mar 19.
Article En | MEDLINE | ID: mdl-38502192

Clarkson disease, or monoclonal gammopathy-associated idiopathic systemic capillary leak syndrome (ISCLS), is a rare, relapsing-remitting disorder featuring the abrupt extravasation of fluids and proteins into peripheral tissues, which in turn leads to hypotensive shock, severe hemoconcentration, and hypoalbuminemia. The specific leakage factor(s) and pathways in ISCLS are unknown, and there is no effective treatment for acute flares. Here, we characterize an autonomous vascular endothelial defect in ISCLS that was recapitulated in patient-derived endothelial cells (ECs) in culture and in a mouse model of disease. ISCLS-derived ECs were functionally hyperresponsive to permeability-inducing factors like VEGF and histamine, in part due to increased endothelial nitric oxide synthase (eNOS) activity. eNOS blockade by administration of N(γ)-nitro-l-arginine methyl ester (l-NAME) ameliorated vascular leakage in an SJL/J mouse model of ISCLS induced by histamine or VEGF challenge. eNOS mislocalization and decreased protein phosphatase 2A (PP2A) expression may contribute to eNOS hyperactivation in ISCLS-derived ECs. Our findings provide mechanistic insights into microvascular barrier dysfunction in ISCLS and highlight a potential therapeutic approach.


Capillary Leak Syndrome , Disease Models, Animal , Nitric Oxide Synthase Type III , Vascular Endothelial Growth Factor A , Animals , Nitric Oxide Synthase Type III/metabolism , Mice , Capillary Leak Syndrome/metabolism , Capillary Leak Syndrome/pathology , Humans , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Endothelial Cells/metabolism , Endothelial Cells/pathology , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Endothelium, Vascular/physiopathology , Histamine/metabolism , Inflammation Mediators/metabolism , NG-Nitroarginine Methyl Ester/pharmacology , Protein Phosphatase 2/metabolism , Protein Phosphatase 2/genetics , Male
10.
PLoS Genet ; 20(3): e1011202, 2024 Mar.
Article En | MEDLINE | ID: mdl-38452140

To sustain growth in changing nutrient conditions, cells reorganize outputs of metabolic networks and appropriately reallocate resources. Signaling by reversible protein phosphorylation can control such metabolic adaptations. In contrast to kinases, the functions of phosphatases that enable metabolic adaptation as glucose depletes are poorly studied. Using a Saccharomyces cerevisiae deletion screen, we identified the PP2A-like phosphatase Ppg1 as required for appropriate carbon allocations towards gluconeogenic outputs-trehalose, glycogen, UDP-glucose, UDP-GlcNAc-after glucose depletion. This Ppg1 function is mediated via regulation of the assembly of the Far complex-a multi-subunit complex that tethers to the ER and mitochondrial outer membranes forming localized signaling hubs. The Far complex assembly is Ppg1 catalytic activity-dependent. Ppg1 regulates the phosphorylation status of multiple ser/thr residues on Far11 to enable the proper assembly of the Far complex. The assembled Far complex is required to maintain gluconeogenic outputs after glucose depletion. Glucose in turn regulates Far complex amounts. This Ppg1-mediated Far complex assembly, and Ppg1-Far complex dependent control of gluconeogenic outputs enables adaptive growth under glucose depletion. Our study illustrates how protein dephosphorylation is required for the assembly of a multi-protein scaffold present in localized cytosolic pools, to thereby alter gluconeogenic flux and enable cells to metabolically adapt to nutrient fluctuations.


Glucose , Saccharomyces cerevisiae Proteins , Glucose/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Protein Phosphatase 2/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Signal Transduction , Phosphorylation
11.
Biomed Pharmacother ; 173: 116398, 2024 Apr.
Article En | MEDLINE | ID: mdl-38458011

Breast cancer has become the most prevalent malignancy worldwide; however, therapeutic efficacy is far from satisfactory. To alleviate the burden of this disease, it is imperative to discover novel mechanisms and treatment strategies. Protein phosphatase 2 A (PP2A) comprises a family of mammalian serine/threonine phosphatases that regulate many cellular processes. PP2A is dysregulated in several human diseases, including oncological pathologies, and plays a pivotal role in the initiation and progression of tumours. The role of PP2A as a tumour suppressor has been extensively studied, and its regulation can serve as a target for anticancer therapy. Recent studies have shown that PP2A is a tumour promotor. PP2A-mediated anticancer therapy may involve two opposing mechanisms: activation and inhibition. In general, the contradictory roles of PP2A should not be overlooked, and more work is needed to determine the molecular mechanism by which PP2A affects in tumours. In this review, the literature on the role of PP2A in tumours, especially in breast cancer, was analysed. This review describes relevant targets of breast cancer, such as cell cycle control, DNA damage responses, epidermal growth factor receptor, immune modulation and cell death resistance, which may lead to effective therapeutic strategies or influence drug development in breast cancer.


Breast Neoplasms , Female , Humans , Breast Neoplasms/drug therapy , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism
12.
Aging (Albany NY) ; 16(5): 4116-4137, 2024 Mar 04.
Article En | MEDLINE | ID: mdl-38441530

Cellular senescence is a permanent cell cycle arrest that can be triggered by both internal and external genotoxic stressors, such as telomere dysfunction and DNA damage. The execution of senescence is mainly by two pathways, p16/RB and p53/p21, which lead to CDK4/6 inhibition and RB activation to block cell cycle progression. While the regulation of p53/p21 signaling in response to DNA damage and other insults is well-defined, the regulation of the p16/RB pathway in response to various stressors remains poorly understood. Here, we report a novel function of PR55α, a regulatory subunit of PP2A Ser/Thr phosphatase, as a potent inhibitor of p16 expression and senescence induction by ionizing radiation (IR), such as γ-rays. The results show that ectopic PR55α expression in normal pancreatic cells inhibits p16 transcription, increases RB phosphorylation, and blocks IR-induced senescence. Conversely, PR55α-knockdown by shRNA in pancreatic cancer cells elevates p16 transcription, reduces RB phosphorylation, and triggers senescence induction after IR. Furthermore, this PR55α function in the regulation of p16 and senescence is p53-independent because it was unaffected by the mutational status of p53. Moreover, PR55α only affects p16 expression but not p14 (ARF) expression, which is also transcribed from the same CDKN2A locus but from an alternative promoter. In normal human tissues, levels of p16 and PR55α proteins were inversely correlated and mutually exclusive. Collectively, these results describe a novel function of PR55α/PP2A in blocking p16/RB signaling and IR-induced cellular senescence.


Protein Phosphatase 2 , Tumor Suppressor Protein p53 , Humans , Cellular Senescence/physiology , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism , Tumor Suppressor Protein p14ARF/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism
13.
Int J Mol Sci ; 25(6)2024 Mar 10.
Article En | MEDLINE | ID: mdl-38542160

Protein serine/threonine phosphatase 2A (PP2A) regulates diverse cellular processes via the formation of ~100 heterotrimeric holoenzymes. However, a scarcity of knowledge on substrate recognition by various PP2A holoenzymes has greatly prevented the deciphering of PP2A function in phosphorylation-mediated signaling in eukaryotes. The review summarized the contribution of B56 phosphorylation to PP2A-B56 function and proposed strategies for intervening B56 phosphorylation to treat diseases associated with PP2A-B56 dysfunction; it especially analyzed recent advancements in LxxIxEx B56-binding motifs that provide the molecular details of PP2A-B56 binding specificity and, on this basis, explored the emerging role of PP2A-B56 in the mitosis process, virus attack, and cancer development through LxxIxE motif-mediated PP2A-B56 targeting. This review provides theoretical support for discriminatingly targeting specific PP2A holoenzymes to guide PP2A activity against specific pathogenic drivers.


Protein Phosphatase 2 , Signal Transduction , Phosphorylation , Protein Phosphatase 2/metabolism , Protein Binding , Holoenzymes/metabolism
14.
Gait Posture ; 110: 77-83, 2024 May.
Article En | MEDLINE | ID: mdl-38547676

BACKGROUND: Individuals with PPP2R5D-related neurodevelopmental disorder have an atypical gait pattern characterized by ataxia and incoordination. Structured, quantitative assessments are needed to further understand the impact of these impairments on function. RESEARCH QUESTION: How do gait parameters and ambulatory function of individuals with PPP2R5D-related neurodevelopmental disorder compare to age and sex matched healthy norms? METHODS: Twenty-six individuals with PPP2R5D pathogenic genetic variants participated in this observational, single visit study. Participants completed at least one of the following gait assessments: quantitative gait analysis at three different speeds (preferred pace walking (PPW), fast paced walking (FPW) and running, six-minute walk test (6MWT), 10-meter walk run (10MWR), and timed up and go (TUG). Descriptive statistics were used to summarize gait variables. Percent of predicted values were calculated using published norms. Paired t-tests and regression analyses were used to compare gait variables. RESULTS: The median age of the participants was 8 years (range 4-27) and eighteen (69.2 %) were female. Individuals with PPP2R5D-related neurodevelopmental disorder walked slower and with a wider base of support than predicted for their age and sex. Stride velocity ranged from 48.9 % to 70.1 % and stride distance from 58.5 % to 81.9 % of predicted during PPW. Percent of predicted distance walked on the 6MWT ranged from 30.6 % to 71.1 % representing varied walking impairment. Increases in stride distance, not cadence, were associated with changes in stride velocity in FPW (R2 = 0.675, p =< 0.001) and running conditions (R2 = 0.918, p =< 0.001). SIGNIFICANCE: We quantitatively assessed the abnormal gait in individuals with PPP2R5D-related neurodevelopmental disorder. These impairments may affect ability to adapt to environmental changes and participation in daily life. Rehabilitative interventions targeting gait speed and balance may improve function and safety for individuals with PPP2R5D-related neurodevelopmental disorder.


Neurodevelopmental Disorders , Protein Phosphatase 2 , Humans , Female , Male , Child , Adolescent , Neurodevelopmental Disorders/physiopathology , Child, Preschool , Young Adult , Adult , Walk Test , Gait Analysis , Gait Disorders, Neurologic/physiopathology , Gait Disorders, Neurologic/etiology , Gait/physiology , Walking/physiology
15.
BMJ Open Diabetes Res Care ; 12(2)2024 Mar 04.
Article En | MEDLINE | ID: mdl-38442987

INTRODUCTION: We previously reported the significant upregulation of eight circulating exosomal microRNAs (miRNAs) in patients with diabetic kidney disease (DKD). However, their specific roles and molecular mechanisms in the kidney remain unknown. Among the eight miRNAs, we evaluated the effects of miR-5010-5p on renal tubular epithelial cells under diabetic conditions in this study. RESEARCH DESIGN AND METHODS: We transfected the renal tubular epithelial cell line, HK-2, with an miR-5010-5p mimic using recombinant plasmids. The target gene of hsa-miR-5010-5p was identified using a dual-luciferase assay. Cell viability was assessed via the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay. Moreover, mRNA and protein expression levels were determined via real-time PCR and western blotting, respectively. RESULTS: High glucose levels did not significantly affect the intracellular expression of miR-5010-5p in HK-2 cells. Transfection of the miR-5010-5p mimic caused no change in cell viability. However, miR-5010-5p-transfected HK-2 cells exhibited significantly decreased expression levels of inflammatory cytokines, such as the monocyte chemoattractant protein-1, interleukin-1ß, and tumor necrosis factor-ɑ, under high-glucose conditions. These changes were accompanied by the restored expression of phosphorylated AMP-activated protein kinase (AMPK) and decreased phosphorylation of nuclear factor-kappa B. Dual-luciferase assay revealed that miR-5010-5p targeted the gene, protein phosphatase 2 regulatory subunit B delta (PPP2R2D), a subunit of protein phosphatase 2A, which modulates AMPK phosphorylation. CONCLUSIONS: Our findings suggest that increased miR-5010-5p expression reduces high glucose-induced inflammatory responses in renal tubular epithelial cells via the regulation of the target gene, PPP2R2D, which modulates AMPK phosphorylation. Therefore, miR-5010-5p may be a promising therapeutic target for DKD.


AMP-Activated Protein Kinases , MicroRNAs , Protein Phosphatase 2 , Humans , AMP-Activated Protein Kinases/metabolism , Epithelial Cells , Glucose/metabolism , Inflammation/metabolism , Luciferases , MicroRNAs/metabolism , Protein Phosphatase 2/metabolism , Kidney Tubules/metabolism , Kidney Tubules/pathology
16.
Exp Cell Res ; 437(1): 113998, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38513962

Plasma saturated free fatty acid (FFA)-induced endothelial dysfunction (ED) contributes to the pathogenesis of atherosclerosis and cardiovascular diseases. However, the mechanism underlying saturated FFA-induced ED remains unclear. This study demonstrated that palmitic acid (PA) induced ED by activating the NADPH oxidase (NOX)/ROS signaling pathway to activate protein phosphatase 4 (PP4) and protein phosphatase 2A (PP2A), thereby reducing endothelial nitric oxide synthase (eNOS) phosphorylation at Ser633 and Ser1177, respectively. Okadaic acid (OA) and fostriecin (FST), which are inhibitors of PP2A, inhibited the PA-induced decreases in eNOS phosphorylation at Ser633 and Ser1177. The antioxidants N-acetylcysteine (NAC) and apocynin (APO) or knockdown of gp91phox or p67phox (NOX subunits) restored PA-mediated downregulation of PP4R2 protein expression and eNOS Ser633 phosphorylation. Knockdown of the PP4 catalytic subunit (PP4c) specifically increased eNOS Ser633 phosphorylation, while silencing the PP2A catalytic subunit (PP2Ac) restored only eNOS Ser1177 phosphorylation. Furthermore, PA dramatically decreased the protein expression of the PP4 regulatory subunit R2 (PP4R2) but not the other regulatory subunits. PP4R2 overexpression increased eNOS Ser633 phosphorylation, nitric oxide (NO) production, cell migration and tube formation but did not change eNOS Ser1177 phosphorylation levels. Coimmunoprecipitation (Co-IP) suggested that PP4R2 and PP4c interacted with the PP4R3α and eNOS proteins. In summary, PA decreases PP4R2 protein expression through the Nox/ROS pathway to activate PP4, which contributes to ED by dephosphorylating eNOS at Ser633. The results of this study suggest that PP4 is a novel therapeutic target for ED and ED-associated vascular diseases.


Nitric Oxide Synthase Type III , Phosphoprotein Phosphatases , Vascular Diseases , Humans , Phosphorylation , Nitric Oxide Synthase Type III/metabolism , Palmitic Acid/pharmacology , Serine/metabolism , Reactive Oxygen Species , Cells, Cultured , Protein Phosphatase 2/metabolism , Nitric Oxide/metabolism
17.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L651-L659, 2024 May 01.
Article En | MEDLINE | ID: mdl-38529552

Airway smooth muscle cell (ASM) is renowned for its involvement in airway hyperresponsiveness through impaired ASM relaxation and bronchoconstriction in asthma, which poses a significant challenge in the field. Recent studies have explored different targets in ASM to alleviate airway hyperresponsiveness, however, a sizeable portion of patients with asthma still experience poor control. In our study, we explored protein phosphatase 2 A (PP2A) in ASM as it has been reported to regulate cellular contractility by controlling intracellular calcium ([Ca2+]i), ion channels, and respective regulatory proteins. We obtained human ASM cells and lung tissues from healthy and patients with asthma and evaluated PP2A expression using RNA-Seq data, immunofluorescence, and immunoblotting. We further investigated the functional importance of PP2A by determining its role in bronchoconstriction using mouse bronchus and human ASM cell [Ca2+]i regulation. We found robust expression of PP2A isoforms in human ASM cells with PP2Aα being highly expressed. Interestingly, PP2Aα was significantly downregulated in asthmatic tissue and human ASM cells exposed to proinflammatory cytokines. Functionally, FTY720 (PP2A agonist) inhibited acetylcholine- or methacholine-induced bronchial contraction in mouse bronchus and further potentiated isoproterenol-induced bronchial relaxation. Mechanistically, FTY720 inhibited histamine-evoked [Ca2+]i response and myosin light chain (MLC) phosphorylation in the presence of interleukin-13 (IL-13) in human ASM cells. To conclude, we for the first time established PP2A signaling in ASM, which can be further explored to develop novel therapeutics to alleviate airway hyperresponsiveness in asthma.NEW & NOTEWORTHY This novel study deciphered the expression and function of protein phosphatase 2Aα (PP2Aα) in airway smooth muscle (ASM) during asthma and/or inflammation. We showed robust expression of PP2Aα in human ASM while its downregulation in asthmatic ASM. Similarly, we demonstrated reduced PP2Aα expression in ASM exposed to proinflammatory cytokines. PP2Aα activation inhibited bronchoconstriction of isolated mouse bronchi. In addition, we unveiled that PP2Aα activation inhibits the intracellular calcium release and myosin light chain phosphorylation in human ASM.


Asthma , Bronchoconstriction , Down-Regulation , Myocytes, Smooth Muscle , Protein Phosphatase 2 , Asthma/metabolism , Asthma/pathology , Humans , Protein Phosphatase 2/metabolism , Protein Phosphatase 2/genetics , Animals , Mice , Down-Regulation/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Myocytes, Smooth Muscle/drug effects , Bronchoconstriction/drug effects , Muscle, Smooth/metabolism , Muscle, Smooth/pathology , Muscle, Smooth/drug effects , Male , Bronchi/pathology , Bronchi/metabolism , Bronchi/drug effects , Calcium/metabolism , Female , Mice, Inbred C57BL
18.
Int J Biol Macromol ; 266(Pt 2): 131149, 2024 May.
Article En | MEDLINE | ID: mdl-38556232

Northern corn leaf blight caused by Setosphaeria turcica is a major fungal disease responsible for significant reductions in maize yield worldwide. Eukaryotic type 2A protein phosphatase (PP2A) influences growth and virulence in a number of pathogenic fungi, but little is known about its roles in S. turcica. Here, we functionally characterized S. turcica StPP2A-C, which encodes the catalytic C subunit of StPP2A. StPP2A-C deletion slowed colony growth, conidial germination, and appressorium formation but increased conidiation, melanin biosynthesis, glycerol content, and disease lesion size on maize. These effects were associated with expression changes in genes related to calcium signaling, conidiation, laccase activity, and melanin and glycerol biosynthesis, as well as changes in intra- and extracellular laccase activity. A pull-down screen for candidate StPP2A-c interactors revealed an interaction between StPP2A-c and StLac1. Theoretical modeling and yeast two-hybrid experiments confirmed that StPP2A-c interacted specifically with the copper ion binding domain of StLac1 and that Cys267 of StPP2A-c was required for this interaction. StPP2A-C expression thus appears to promote hyphal growth and reduce pathogenicity in S. turcica, at least in part by altering melanin synthesis and laccase activity; these insights may ultimately support the development of novel strategies for biological management of S. turcica.


Ascomycota , Catalytic Domain , Gene Expression Regulation, Fungal , Melanins , Protein Phosphatase 2 , Spores, Fungal , Melanins/biosynthesis , Ascomycota/genetics , Ascomycota/metabolism , Ascomycota/enzymology , Spores, Fungal/growth & development , Protein Phosphatase 2/metabolism , Protein Phosphatase 2/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Plant Diseases/microbiology , Zea mays/microbiology
19.
Brain Res ; 1829: 148793, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38309553

Alzheimer's disease (AD) is a progressive neurological disorder that impairs memory and cognitive abilities, primarily in the elderly. The burden of AD extends beyond patients, impacting families and caregivers due to the patients' reliance on assistance for daily tasks. The main features of the pathogenesis of AD are beta-amyloid plaques and neurofibrillary tangles (NFTs), that strongly correlate with oxidative stress and inflammation. NFTs result from misfolded and hyperphosphorylated tau proteins. Various studies have focused on tau phosphorylation, indicating protein phosphatase 2A (PP2A) as the primary tau phosphatase and glycogen synthase kinase-3 beta (GSK-3ß) as the leading tau kinase. Experimental evidence suggests that inhibition of PP2A and increased GSK-3ß activity contribute to neuroinflammation, oxidative stress, and cognitive impairment. Hence, targeting PP2A and GSK-3ß with pharmacological approaches shows promise in treating AD. The use of natural compounds in the drug development for AD have been extensively studied for their antioxidant, anti-inflammatory, anti-cholinesterase, and neuroprotective properties, demonstrating therapeutic advantages in neurological diseases. Alongside the development of PP2A activator and GSK-3ß inhibitor drugs, natural compounds are likely to have neuroprotective effects by increasing PP2A activity and decreasing GSK-3ß levels. Therefore, based on the preclinical and clinical studies, the potential of PP2A and GSK-3ß as therapeutic targets of natural compounds are highlighted in this review.


Alzheimer Disease , Humans , Aged , Alzheimer Disease/metabolism , Protein Phosphatase 2/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , tau Proteins/metabolism , Amyloid beta-Peptides/metabolism , Phosphorylation/physiology
20.
EMBO J ; 43(6): 993-1014, 2024 Mar.
Article En | MEDLINE | ID: mdl-38378890

Entry into mitosis has been classically attributed to the activation of a cyclin B/Cdk1 amplification loop via a partial pool of this kinase becoming active at the end of G2 phase. However, how this initial pool is activated is still unknown. Here we discovered a new role of the recently identified PP2A-B55 inhibitor FAM122A in triggering mitotic entry. Accordingly, depletion of the orthologue of FAM122A in C. elegans prevents entry into mitosis in germline stem cells. Moreover, data from Xenopus egg extracts strongly suggest that FAM122A-dependent inhibition of PP2A-B55 could be the initial event promoting mitotic entry. Inhibition of this phosphatase allows subsequent phosphorylation of early mitotic substrates by cyclin A/Cdk, resulting in full cyclin B/Cdk1 and Greatwall (Gwl) kinase activation. Subsequent to Greatwall activation, Arpp19/ENSA become phosphorylated and now compete with FAM122A, promoting its dissociation from PP2A-B55 and taking over its phosphatase inhibition role until the end of mitosis.


Caenorhabditis elegans , Protein Serine-Threonine Kinases , Animals , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism , Mitosis , CDC2 Protein Kinase/genetics , CDC2 Protein Kinase/metabolism , Cyclin B/metabolism
...